Essential Chunking Techniques for Building Better LLM Applications

  Every large language model (LLM) application that retrieves information faces a simple problem: how do you break down a 50-page document into pieces that a model can actually use? So when you’re building a retrieval-augmented generation (RAG) app, before your vector database retrieves anything and your LLM generates responses, your documents need to be split into chunks.

Essential Chunking Techniques for Building Better LLM Applications
  Every large language model (LLM) application that retrieves information faces a simple problem: how do you break down a 50-page document into pieces that a model can actually use? So when you’re building a retrieval-augmented generation (RAG) app, before your vector database retrieves anything and your LLM generates responses, your documents need to be split into chunks.